搜尋結果 Search Result

搜尋結果 : 和"文字探勘"有關的資料, 共有3筆
深度學「習」:以自然語言處理方法研究 「習近平重要講話」意識形態與時序變化趨勢
Deep Learning “Xi”: Using Natural Language Processing Important Ideology Model and Timeseries Trends in “Xi Jinping’s Speech”
邵軒磊 (Hsuan-lei Shao)
63卷3期(2024/09/01)

「習近平之發言作為」成為觀察中共政治情勢的核心指標,其個人思想也成為中共政治的重要動力。本研究試圖回答:「習近平意識形態體系特徵與其思想時序變化」,特別是與毛主義的關係。本研究之方法為「計算政治學/計算中國研究」,使用計算機為核心來探索人力難以發現的部分。具體而言,蒐集「習近平系列重要講話資料庫」中之講話文本,作為分析語料。使用程式技術如文字探勘(text mining)、自然語言處理(natural language processing)與深度學習(deep learning)演算法..

Xi Jinping’s activities have become the core focus of the CCP’s political landscape, and his ideology has emerged as a significant driving force in Chinese politics. This study aims to answer the question: “What are the characteristics of Xi Jinping’s ideological system and its chronological evolution?” particularly in relation to Maoism. The methodology of this research is rooted in “computational politics/computational Chinese studies,” utilizing computational methods to explore aspects that are d..

法律資料分析與文字探勘:跨境毒品流動要素與結構研究
Applying Legal Analytics and Text Mining: Factors and Structure of the Cross-border Drug Trafficking
邵軒磊(Hsuan-lei Shao)吳國清(Kou-ching Wu)
58卷2期(2019/06/01)

台灣約有六成毒品來自境外,因此「跨境」毒品流動為重要研究主題,亦關乎台灣在國際政治上之非傳統安全領域,但至今少有公開資訊。本研究使用法律資料分析法,探索七萬餘篇法院判決書作為文本資料,描繪「毒品案件要素與結構」。研究發現:(1)近年約有三分之二件毒品案件是累犯,所有案件中之四分之三可易科罰金,兩者佐證現實上監獄負擔過重問題。(2)近年關於毒品之7種犯罪方式之數量增長程度有顯著差異存在,犯案數量由大至小為「施用、持有、製造、販賣、轉讓、運輸、栽種」。(3)就近..

Illegal drug is a serious global problem today. It is necessary to understand its distribution and trafficking routes in order to tackle this problem. Moreover, it is estimated that approximately 60 percent of the illegal drugs in Taiwan came from overseas. Hence, the flaw of cross-border drug control is also an important issue in international affairs. This article uses legal analytics to study 71,629 judgements text involving drug-related crimes to grasp the picture of case factor and structure by text mining technology. It..

文字探勘技術輔助主題分析—以「中國大陸研究」期刊為例
Text Mining-based Topic Analysis: A Case Study of the Journal “Mainland China Studies”
邵軒磊(Hsuan-lei Shao)曾元顯(Yuen-Hsien Tseng)
57卷1期(2018/03/01)

中國大陸(Mainland China)做為社會科學學術研究對象,隨學科變遷以及兩岸情勢發展,在各時期有不同主題。承此,本文使用主題分析工具 (CATAR),對「中國大陸研究」期刊於 1998~2015 年刊載之論文,透過論文的篇名與摘要文字,從事主題群聚(clustering)分析,藉以辨識顯著的研究主題,及其關鍵字,並以此觀察各主題發展趨勢。結果呈現出「中國大陸研究」之 473 篇文章,可歸類為七大主題,每一主題各有關鍵字。從每個主題的發表量(包括「發表..

With the rapid development of cross-strait situation, “Mainland China” as a subject of social science studies reflects different topics in different eras. This study applies an automatic content analysis tool(CATAR)to analyze the journal “Mainland China Studies”(1998-2015)to observe research trends based on clustering of the texts from the title and abstract of each journal article. The results show that the 473 articles published by the journal are clustered into seven salient topics. By publication n..

top